

A Context-Dependent Gated Module for Incorporating Symbolic Semantics into Event Coreference Resolution Tuan Lai¹, Heng Ji¹, Trung Bui², Quan Hung Tran², Franck Dernoncourt², Walter Chang² ¹ UIUC, ² Adobe Research

Introduction

- Event coreference resolution is the task of clustering event mentions in a text that refer to the same realworld events.
- Is using BERT-based models alone enough for event coreference resolution?
- We argue that it is still highly beneficial to utilize symbolic features (e.g., event types, attributes, arguments) for the task.

... we are seeing these soldiers $\{\text{head out}\}_{ev1}$ these soldiers were set to $\{\text{leave}\}_{ev2}$ in January ... ev1 (Movement:Transport): Modality = ASSERTED ev2 (Movement: Transport): Modality = OTHER

> An example of using the modality attribute to improve coreference resolution

Contributions

- However, the automatically extracted symbolic features can be **noisy** and **contain errors**.
- We propose
 - 1. A novel gated module to adaptively control the information flows from the input symbolic features.
 - 2. A simple regularization method to intentionally add more noise to the symbolic features during training.

- Trigger features are used as the main controlling context.
- CDGM takes trigger features and symbolic features as inputs and returns the distilled version of the symbolic features.
- The distilled representation is a combination of:
 - A parallel component ~ "old" information
 - An orthogonal component ~ "new" information

Dataset	Features	Categorical Values	Acc. (Train)	Acc. (Dev)	Acc. (Test)
ACE 2005	Event Type	33 subtypes	0.999	0.945	0.953
	Polarity	Positive, Negative	0.999	0.994	0.988
	Modality	Asserted, Negative	0.999	0.856	0.884
	Genericity	Generic, Specific	0.999	0.865	0.872
	Tense	Past, Present, Future, Unspecified	0.984	0.802	0.763
KBP 2016	Туре	38 subtypes	0.960	0.874	0.818
	Realis	Actual, Generic, Other	0.979	0.845	0.840

Introduce Random Noise in Training

• The quality of event attribute prediction on training data is much higher than that on test data. \rightarrow Intentionally add noise to symbolic features during training.

• For epsilon% of the time, change the predicted attribute label to some different label. • Epsilon is larger when the performance of classifier is lower

List of symbolic features we consider in this work

Algorithm 1: Noise Addition for Symbolic Features				
Algorithm 1: Noise Addition for Symbolic Features				
Input: Document D				
Hyperparameters : $\{\epsilon_1, \epsilon_2, \cdots, \epsilon_K\}$				
for $i = 1 \ldots k$ do				
for $u = 1 \ldots K$ do				
With prob. ϵ_u , replace $c_i^{(u)}$ by				
$\hat{c}_i^{(u)} \sim Uniform(N_u)$				
end				
end				

Notation	Description
D	The input document
k	Number of event mentions in the input document
K	Number of categorical symbolic features
$c_i^{(u)}$	The original (predicted) value of the u -th symbolic feature of the i -th event mention
$\hat{c}_i^{(u)}$	The newly sampled value for $c_i^{(u)}$
$\{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_K\}$	Hyperparameters controlling the noise addition frequencies.

End-to-End Results

	CoNLL	AVG
Joint Learning (<u>Lu et al. 2017</u>)	35.77	33.08
E3C (<u>Lu et al. 2020</u>)	41.97	38.66
SpanBERT	40.57	37.59
SpanBERT + All Features (Simple Concatenation)	41.40	38.58
SpanBERT + All Features (CDGM + Noisy Training)	43.55	40.61

Overall F-score (%) on KBP 2016 Dataset

	CoNLL	AVG
SSED + MSEP (<u>Peng et al. 2016</u>)	53.80	51.38
SpanBERT	58.93	55.78
SpanBERT + All Features (Simple Concatenation)	57.55	54.79
SpanBERT + All Features (CDGM)	58.99	56.32
SpanBERT + All Features (Noisy Training)	60.43	57.85
SpanBERT + All Features (CDGM + Noisy Training)	62.07	59.76

Overall F-score (%) on ACE 2005 Dataset

Contributions of Different Symbolic Features

Our methods consistently perform better than the simple concatenation strategy across all feature types

Please refer to our original paper for more analysis and results.